Explore our database of over 4000 laboratory markers.
Search and Understand 4000+ Biomarkers
Optimal range: 31 - 64 umol/L
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 25.4 - 454.2 umol/g Cr
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 3.5 - 11.6 qmol/dL
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 39 - 100 %
Asparagine is a dietarily dispensable amino acid synthesized from aspartate and glutamine. Asparagine has three major functions:
1) incorporation into amino acid sequences of proteins;
2) storage form for aspartate (is a required precursor for synthesis of DNA, RNA and ATP); and
3) source of amino groups for production of other dispensable amino acids via trasaminases.
Optimal range: 45 - 260 qmol/24 hours
LEARN MOREOptimal range: 29 - 82.6 umol/L
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 4.3 - 9.6 ug/mg CR
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 40 - 200 qM/g creatinine
LEARN MOREOptimal range: 29.5 - 84.5 umol/L
Asparagine is a protein amino acid. It is non-essential in humans, meaning the body can synthesize it.
Asparagine is synthesized from aspartate and glutamine. Asparagine has three major functions:
Optimal range: 3.5 - 11.6 Units
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name.
Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body.
Optimal range: 12 - 115 micromol/g creatinine
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 2 - 43 mmol/mol creatinine
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 14 - 159.7 nmol/mg Creatinine
LEARN MOREOptimal range: 15.6 - 62.7 nmol/ML
Asparagine is a non-essential protein amino acid that is present in many fruits and vegetables including asparagus, from which it gets its name. Other dietary sources include meat, potatoes, eggs, nuts, and dairy. It can also be formed from aspartic acid and glutamine using the enzyme asparagine synthetase.
In addition to being a structural component of many proteins, asparagine is also useful to the urea cycle. It acts as a nontoxic carrier of residual ammonia to be eliminated from the body. Asparagine is rapidly converted to aspartic acid by the enzyme asparaginase. Interestingly, L-asparaginase has been successfully used as a chemotherapeutic agent for decades.
It causes extracellular depletion of asparagine which seems to play a critical role in cellular adaptations to glutamine and apoptosis.
Optimal range: 31 - 90 µmol/L , 3.10 - 9.00 µmol/dL
Asparagine is a protein amino acid. It is non-essential in humans, meaning the body can synthesize it.
Asparagine is synthesized from aspartate and glutamine. Asparagine has three major functions:
Optimal range: 39.2 - 89.8 nmol/ML
LEARN MOREOptimal range: 25 - 166 micromol/g creatinine
Asparagine is a protein amino acid. It is non-essential in humans, meaning the body can synthesize it.
Asparagine is synthesized from aspartate and glutamine.
Asparagine has three major functions:
Optimal range: 0.5 - 2.8 ng/MM WBC
Asparagine is a non-essential amino acid required for development and function of the brain. Asparagine can be synthesized from glutamine and aspartate. Asparagine is also required for DNA and RNA synthesis and removal of the cellular waste product ammonia.
Optimal range: 0.3 - 2.1 ELISA Index
LEARN MOREOptimal range: 0.1 - 2.2 ELISA Index
LEARN MORE